منابع مشابه
p-ADIC INTERPOLATION
Although N is discrete in R, it is not discrete in Qp, and in fact has closure Zp. This raises the possibility of p-adically interpolating a sequence an, which is really a function n 7→ an on N, to a continuous function x 7→ ax with x ∈ Zp. Our basic question is this: when does a function f : N→ Qp extend to a continuous function Zp → Qp? We will look at some concrete examples, then see what a ...
متن کاملp-ADIC DEDEKIND AND HARDY-BERNDT TYPE SUMS RELATED TO VOLKENBORN INTEGRAL ON Zp
where ((x)) = x − [x]G − 1 2 , if x / ∈ Z, ((x)) = 0, x ∈ Z, where [x]G is the largest integer ≤ x cf. ([1], [5], [9], [11], [12], [13]). In this paper, Zp, Qp, Cp, C and Z, respectively, denote the ring of p-adic integers, the field of p-adic rational numbers, the p-adic completion of the algebraic closure of Qp normalized by |p|p = p −1, and the complex field and integer numbers. Let q be an ...
متن کاملT-ADIC L-FUNCTIONS OF p-ADIC EXPONENTIAL SUMS
The T -adic deformation of p-adic exponential sums is defined. It interpolates all classical p-power order exponential sums over a finite field. Its generating L-function is a T -adic entire function. We give a lower bound for its T -adic Newton polygon and show that the lower bound is often sharp. We also study the variation of this L-function in an algebraic family, in particular, the T -adic...
متن کاملThe Eisenstein Measure and P-Adic Interpolation
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملHigher Dimensional Dedekind Sums
In this paper we will study the number-theoretical properties of the expression v1 nkal rcka,, d(p; a I . . . . . an) = ( 1) n/2 ~ cot cot (1) k=l P P and of related finite trigonometric sums. In Eq. (I), p is a positive integer, a~ . . . . . a, are integers prime to p, and n is even (for n odd the sum is clearly equal to zero). There are two reasons for being interested in sums of this type. F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1988
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700026848